
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbci20

Download by: [University of California, Los Angeles (UCLA)] Date: 01 December 2016, At: 15:18

Brain-Computer Interfaces

ISSN: 2326-263X (Print) 2326-2621 (Online) Journal homepage: http://www.tandfonline.com/loi/tbci20

Online BCI typing using language model classifiers
by ALS patients in their homes

William Speier, Nand Chandravadia, Dustin Roberts, Shrita Pendekanti &
Nader Pouratian

To cite this article: William Speier, Nand Chandravadia, Dustin Roberts, Shrita Pendekanti &
Nader Pouratian (2016): Online BCI typing using language model classifiers by ALS patients in
their homes, Brain-Computer Interfaces, DOI: 10.1080/2326263X.2016.1252143

To link to this article:  http://dx.doi.org/10.1080/2326263X.2016.1252143

Published online: 15 Nov 2016.

Submit your article to this journal 

Article views: 13

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tbci20
http://www.tandfonline.com/loi/tbci20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/2326263X.2016.1252143
http://dx.doi.org/10.1080/2326263X.2016.1252143
http://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/2326263X.2016.1252143
http://www.tandfonline.com/doi/mlt/10.1080/2326263X.2016.1252143
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2016.1252143&domain=pdf&date_stamp=2016-11-15
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2016.1252143&domain=pdf&date_stamp=2016-11-15


Brain-Computer Interfaces, 2016
http://dx.doi.org/10.1080/2326263X.2016.1252143

Online BCI typing using language model classifiers by ALS patients in their 
homes

William Speiera  , Nand Chandravadiab, Dustin Robertsa, Shrita Pendekantib and Nader Pouratiana,b,c,d,e 
aDepartment of Neurosurgery, University of California, Los Angeles, CA, USA; bNeuroscience Interdepartmental Program, University of California, 
Los Angeles, CA, USA; cDepartment of Bioengineering, University of California, Los Angeles, CA, USA; dBrain Research Institute, University of 
California, Los Angeles, CA, USA; eUCLA Neurosurgery, Los Angeles, CA, USA

ABSTRACT
The P300 speller is a common brain-computer interface system that can provide a means of 
communication for patients with amyotrophic lateral sclerosis (ALS). Recent studies have shown 
that incorporating language information in signal classification can improve system performance, 
but this has largely been tested on healthy volunteers in a laboratory setting. The goal of this study 
was to demonstrate the functionality of the P300 speller system with language models when 
used by ALS patients in their homes. Six ALS patients with functional ratings ranging from 2 to 28 
participated in this study. All subjects had improved offline performance when using a language 
model and five subjects were able to type at least six characters per minute with over 84% accuracy 
in online sessions. The results of this study indicate that the improvements in performance using 
language models in the P300 speller translate into the ALS population, which could help to make it 
a viable assistive device.

Introduction

The P300 speller is a common brain-computer interface 
system that can provide a means of communication for 
‘locked-in’ patients, such as those with amyotrophic lat-
eral sclerosis (ALS).[1] While this system was initially 
developed almost 30 years ago, it is not widely used in 
part because typing speed and accuracy are below those 
desired by the ALS population.[2] The system utilizes one’s 
electroencephalogram (EEG) to facilitate language com-
munication by detecting stimulus-evoked potentials and 
converting them into virtual commands in the form of 
typing. Non-invasive electrodes yield undesirable signal 
noise, necessitating many stimulus trials and sophisticated 
computation. This decreases the speed of typing and has 
led to several system optimization studies. Approaches 
at system optimization include varying the dimensions 
of the character matrix,[3–5] optimizing system parame-
ters,[6,7] and employing various signal-processing meth-
ods.[8–11]

Recent studies have shown that performance using the 
system can be improved by utilizing knowledge of natu-
ral language to improve signal classification,[12] similar 
to methods used in other language-processing domains 
such as speech recognition.[13] Simple n-gram language 

models have been the mainstay of BCI studies, beginning 
with a naïve Bayes model,[14,15] and later using a partially 
observable Markov decision process [16] and a hidden 
Markov model.[17,18] However, recently a particle filter 
(PF) algorithm made possible the use of more compli-
cated language models by eliminating the requirement 
for sampling over entire state spaces, which was shown 
to have superior results, yielding a 56% average increase 
in bit rate over traditional methods in offline trials.[19] 
This method approximates distributions by projecting 
samples through a state-space language model based on 
the observed EEG signals. The system then determines 
the most likely output by finding the state that attracts the 
highest number of samples.

While the preliminary results using language models 
have been promising, they have largely been tested on 
healthy volunteers in a laboratory setting. Using healthy 
subjects is advantageous for validating and testing these 
systems because they are more accessible than ALS 
patients; the ALS population is significantly smaller than 
the healthy population and patients generally have trou-
ble traveling, requiring a prototype system to be mobile 
enough to transport to a patient’s home. Using healthy 
subjects also alleviates the research burden on the ALS 
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radiation therapy to treat a tumor. Two of the subjects 
(D and E) required a second visit because of technical 
problems with the equipment that prevented recording of 
EEG signals during the initial visit. All subjects consented 
to participate and the study was approved by the UCLA 
institutional review board. None of the subjects had gross 
cognitive deficits (although formal comprehensive test-
ing was not immediately available) and all used non-BCI 
means of communication (Table 1).

Data collection

EEG data were recorded using g.tec amplifiers, active EEG 
electrodes, and an electrode cap (Guger Technologies, 
Graz, Austria). Signals were sampled at 256 Hz, referenced 
to the left ear grounded to AFz, and filtered using a band-
pass of 0.1–60 Hz and a notch filter from 58 to 62 Hz. The 
electrode set consisted of 32 channels placed according 
to a previously published configuration.[6] The system 
used a 6×6 character grid, row and column flashes, a 
stimulus onset asynchrony of 125 ms, and famous-faces 
stimuli.[21] The hardware was loaded onto a cart, which 
was then transported to patients’ homes so they could use 
it in their home environment. Subjects were moved to 
the location most comfortable for them to best simulate 
realistic use of the system (bed for subject A, kitchen 
chair for subject B, electric wheelchair for subjects C, D, 
and E). The application was then displayed on a monitor 
approximately 1 meter in front of the subject’s face.

Each subject first participated in an initial offline 
experiment, consisting of three 5-min trials where the 
subject copied a given 10-character phrase with 10 rep-
etitions per character and without feedback. The data 
from these training phases were then analyzed using a 
standard stepwise linear discriminant analysis (SWLDA) 
classifier (see below) and, if the classifier was successful 
in finding classification features in the subject’s signals, 
a testing phase followed. During the testing phase, sub-
jects were instructed to pick a phrase that they wished 
to type, which they indicated to investigators using their 
standard communication method. They then used the 
system in online mode with the results being displayed 
in real time. Because of the amount of time required for 

population as they often are easily fatigued and have severe 
health concerns so constant experimentation would be 
both impractical and unethical. Because many ALS 
patients do not have cognitive deficits,[20] it is often pre-
sumed that healthy subjects’ EEG signals reflect those of 
ALS patients and, therefore, that improvements in healthy 
subject BCI performance will predict improvements in 
the ALS population. However, some ALS patients have 
deficits that can affect BCI performances such as lack of 
gaze control, blurry vision, and unstable neck muscles hin-
dering the ability to keep the head steady. The patients’ 
environments can pose additional challenges with med-
ical equipment such as bilevel positive airway pressure 
(BiPAP) machines and ventilators that can affect electrode 
connectivity and introduce electrical noise. Moreover, the 
stimulus-evoked responses, including visual evoked sig-
nals and the P300 response may not be identical in healthy 
controls and affected subjects. Because of these differences, 
it is important to test BCI systems on the target population 
in order to verify that improvements seen in healthy sub-
jects truly reflect a more effective system for ALS patients.

The goal of this study was to perform initial validation 
of the methods that have been developed in healthy sub-
jects within the target patient population and to identify 
issues unique to ALS patients that should be addressed in 
order to make the P300 speller a viable augmentative and 
assistive communication (AAC) system. A mobile setup 
was constructed by loading a desktop and monitors onto a 
cart which was transported to patient homes. Subjects used 
a version of the P300 speller with language models [19] that 
was previously validated on healthy volunteers to type in 
both online and offline modes. Results were then compared 
with those previously reported using healthy subjects to 
demonstrate how the healthy subject results translate into 
the target population and to identify issues unique to ALS 
patients that need to be addressed in a final system.

Materials and methods

Subjects

Six patients participated in this study. Five of the subjects 
(subjects A, B, D, E, and F) were diagnosed with ALS and 
the sixth (subject C) had brainstem necrosis caused by 

Table 1. Description of ALS subjects participating in this study, including their function ratings (ALS-FRS) and current communication 
methods.

Subject Description ALS-FRS Communication method
A Subject is on ventilator with only gaze control 2 Eye tracker
B Subject is able to walk and speak with difficulty 24 Talking
C Subject is able to speak with difficulty, has control of arms, but cannot walk 18 Talking
D Subject is able to walk with walker, can speak, but has trouble supporting head while sitting 28 Talking
E Subject is able to speak and move head with minimal difficulty, uses a BiPAP mask, has some control 

of one hand, but cannot move legs
11 Talking, head mouse

F Subject is paralyzed from the neck down and has no ability to speak 8 Head-mounted laser
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setup and teaching the patient how to use the system, as 
well as offline training, fatigue was a concern during the 
online session. Subjects were told to use the system only as 
long as they were comfortable, which resulted in different 
amounts of online data between subjects. For comparison, 
a set of 10 healthy volunteers with normal or corrected to 
normal vision between the ages of 20 and 35 underwent 
the same protocol in a controlled laboratory setting.

BCI2000 was used for data acquisition and online anal-
ysis.[22] Offline analysis was performed using MATLAB 
(version 8.6.0, MathWorks, Inc, Natick, MA).

Classifier

SWLDA is a classification algorithm that uses least squares 
regression to select a set of signal features.[23] It iteratively 
adds significant features and removes the least signifi-
cant features until either the target number of features is 
reached or a state where no features are added or removed 
is achieved.[11] The dot product of the feature vector and 
user’s EEG signal then determines a score for a given stim-
ulus response. Using the score distributions for attended 
and non-attended signals, the likelihood of a response 
resulting from an attended signal can be determined.[15]

The PF method combines these likelihood probabil-
ities with prior knowledge about language structure to 
decide the most probable character given the observed 
signal. This is accomplished by estimating the probability 
distribution over possible outputs,[19] which is created 
by sampling a batch of possible realizations of the model 
called particles. These so-called particles independently 
move through states in the language model based on 
their transition probabilities. Once a character selection 
is made, particles are resampled based on weights derived 
from observed EEG responses, effectively replacing lower 
probability with higher probability realizations. The algo-
rithm then computes a histogram to estimate a probabil-
ity distribution over the possible output strings after the 
particles have moved through the model.

Dynamic classification was implemented by setting a 
threshold probability rather than a set number of flashes to 
determine when a decision should be made.[15] The clas-
sifier then selected the character that satisfied the highest 
probability. In offline analysis, the value of the threshold 
probability was varied between 0 and 1 in increments of 
0.01, the corresponding speeds, accuracies, and bit rates 
were determined, and the threshold probability that max-
imized the bit rate was selected.

Evaluation

Evaluation of a BCI system is twofold: the ability of the 
system to achieve the desired result (i.e. accuracy) and the 

amount of time required to reach that result must both be 
accounted for. Selection accuracy can be used as a surro-
gate for measuring system efficacy. We define accuracy by 
the percentage of final output characters that match the 
target string. Selection rate (SR) measures the speed of the 
system by taking the inverse of the average time required 
to make a selection.

Because there is a tradeoff between speed and accu-
racy, information transfer rate (ITR) (in bits/min) is also 
used to evaluate BCI systems. It has been shown that ITR 
overestimates the information rate in BCI typing because 
it assumes that all characters are equally probable and 
independent of previous selections, which does not hold 
when typing natural language.[24,25] Furthermore, ITR 
assumes that all errors are uniformly distributed across all 
possible characters, which is not true in the presence of 
a language model which biases the system towards more 
probable characters. Nevertheless, it is a standard metric 
used for evaluation of P300 communication systems, so 
we include it here in addition to the more appropriate 
accuracy and selection rate metrics. Because of the vio-
lated assumptions, however, this value should only be used 
as a basis for comparison to other language-based systems 
and not as an accurate assessment of the true information.

The ITR is found by first calculating the bits per symbol, 
B, the amount of information transmitted per selection 
when taking into account the accuracy and the number 
of possible selections [26]:

where N is the number of characters in the grid (36) and 
Acc is the selection accuracy. ITR can then be found by 
multiplying the selection rate by the bits per symbol. 
Significance was tested using Wilcoxon rank-sum tests. 
In offline analysis, the optimal threshold probability was 
determined independently per subject. However, this opti-
mization was impractical for online experiments, so a pre-
viously reported value of 0.95 was used for all trials.[18]

Results

Offline performance

In retrospective analysis of the training data using the 
offline version of the particle filter classifier, five of the 
subjects were able to achieve above 90% accuracy using 
fewer than 40 flashes on average (Figure 1). When opti-
mizing the selection threshold, all subjects other than 
subject C had accuracies above 80% with selection rates 
of at least 10 characters/minute (Table 2). The ITR values 
for these five subjects ranged from 34.15 (subject D) to 
61.19 (subject B).

B = log2N + Acc log2 Acc + (1 − Acc)log2
1 − Acc

N − 1
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algorithm were lower than those achieved by healthy 
subjects (11.97 characters/minute, 96.00%, and 57.00 
bits/minute), but none were significant (p = .25, 
p = .19, and p = .15, respectively using Wilcoxon rank-
sum tests). Excluding subject C from analysis resulted in 
a higher average selection rate (11.35 characters/minute), 
accuracy (92.67%), and bit rate (50.78 bits/minute). The 
selection rate and ITR were still lower than the values 
for healthy subjects, but none of the differences between 
the data sets were significantly different (p = .50, p = .40, 
and p = .31, respectively).

Online performance

The four subjects who were able to use the system in 
online mode were all able to type using the system with 
at least 84% accuracy, with three (subjects A, B, and D) 
having perfect accuracy. The subjects typed different 
numbers of characters based on the length of the phrase 
chosen, with subjects A, B, D, E, and F typing 9, 15, 
18, 50, and 19 characters, respectively. There were 
11 incorrect selections across all subjects of which 
five (45.5%) were automatically corrected by the PF 
algorithm. Selection rates varied from 5.96 characters/
minutes (subject D) to 12.61 characters/minute (subject 
E), resulting in ITR values from 30.79 bits/minute to 
60.08 bits/minute.

The average accuracy for ALS patients (95.64%) 
was slightly higher than that found in healthy subjects 
(94.21%) using this system and the average selection rate 
(9.90 characters/minute) was lower than that reported 
for healthy subjects (11.16 characters/minute), but 
neither difference was statistically significant (p = .31 and 
p = .16, respectively) (Table 3). The lack of significance for 
the selection rate is probably due to the small sample size 
and a large variance in performance as subject D had a 
lower selection rate than any of the healthy subjects and 
the selection rates for subjects A and E were lower than all 
but one of the healthy subjects. Similarly, the average ITR 
value for ALS patients (46.26 bits/minute) was lower than 

Using the full signal, the SWLDA classifier was not able 
to find sufficient features in subject C’s data in order to 
detect P300 signals. When manually inspecting the signal, 
P300 responses were seen in the parietal and occipital 
electrodes (Figure 2). Limiting the classifier to these chan-
nels, the classifier was able to achieve 53.33% accuracy 
with a selection rate of 5.54 characters/minute, both sub-
stantially lower than the other subjects.

Overall, the full set of six subjects averaged 10.38 
characters/minute with an accuracy of 86.11%, resulting 
in an ITR of 43.96 bits/minute using the particle filter 
classifier. All three values were higher than those found 
using a standard SWLDA classifier with dynamic stop-
ping (7.53 characters/minute, 82.22%, and 28.88 bits/
minute, respectively). The differences in selection rate 
and ITR were significant (p = .03 and p = .03, respec-
tively), but the difference in accuracy was not signifi-
cant (p = .13). The values found using the particle filter 

Figure 1.  Offline accuracy versus average number of stimuli 
(i.e. row/column flashes) used for classification. As the selection 
threshold is increased in offline analysis, the number of stimuli 
used for classification increases, increasing the selection accuracy. 
The results of the five ALS patients are plotted along with the 
average and standard deviation for a set of 10 healthy subjects.

Table 2.  Offline selection rates (SR) and accuracies (Acc) for 
each ALS subject along with the average results from a group of 
healthy subjects using the same system when using two different 
classifiers: the standard linear discriminant analysis with dynamic 
stopping (DYN) or particle filtering with a language model (PF).

Subject SR (selections/minute) Acc (%)

DYN PF DYN PF
A 6.33 9.65 83.33 96.67
B 9.68 13.68 93.33 93.33
C 4.66 5.54 46.67 53.33
D 7.54 9.98 76.67 80.00
E 8.53 11.88 90.00 96.67
F 8.42 11.92 96.67 96.67
Average 7.53 10.38 81.11 86.11
Healthy average 9.78 11.97 95.00 96.00

Table 3. Online selection rates (SR) and accuracies (Acc) for each 
ALS subject along with the average results from a group of healthy 
subjects using the same system. Subject C did not participate in 
the online trial because the classifier was not able to successfully 
distinguish between attended and non-attended signals.

Subject SR (selections/minute) Acc (%)
A 9.24 100.00
B 11.62 100.00
C N/A N/A
D 5.96 100.00
E 10.06 94.00
F 12.61 84.21
Average 9.90 95.64
Healthy average 11.16 94.21
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Of the five subjects who successfully used the system 
in online mode, one subject (subject B) had comparable 
performance to the healthy volunteers, while the other 
four were lower. The four subjects who had lower per-
formance all used headrests that pushed against their 
occipital electrodes. Because the electrodes used in this 
study were not flat against the head, this pressure could 
cause them to turn, reducing their connectivity over time. 
Subject D in particular moved his head to focus on each 
new character, which caused shifting in the electrodes and 
resulted in noise for the first few stimuli for each character. 
Additionally, subject E used a BiPAP mask continuously 
through the experiment, which required shifting elec-
trodes to avoid the straps. While no obvious differences 
were noticed in the signals, the slight change in location 
and additional pressure could have affected connectivity. 
Nevertheless, these subjects were able to use the system to 
successfully communicate in an online setting. However, 
the obstacles unique to the target patient population 
should be taken into account when choosing hardware 
for a production system as they can possibly affect how 
well the system translates into a realistic environment.

While five subjects were able to successfully use the 
system in online mode, there was one subject for whom 
the classifier could not detect P300 signals, preventing 
online use. This subject reported subjective blurry vision 
and difficulty focusing his gaze, which prevented him 
from using eye-tracking systems. After manually choosing 
the channels with the best signal, however, offline anal-
ysis showed that communication could still be possible. 
Identifying the set of channels that can best discriminate 

that reported for healthy subjects (52.27 bits/minute), but 
not significantly (p = .16).

Discussion

BCI typing with a language model classifiers results in 
improved performance over that generally reported in 
the literature in subjects who are the intended users of 
such devices, similar to the improvements seen in healthy 
subjects. The online typing speeds achieved using the clas-
sifier implemented in this study (5.96–12.61 characters/
minute) are also higher than those previously reported 
in the ALS population using other language models. In 
a 10-subject ALS study, Mainsah et al. [27] reported an 
average selection rate of 1.7 characters/minute with an 
accuracy of 80% using a standard classifier. Incorporating 
dynamic stopping and a language model using naïve 
Bayes, subjects were able to increase average typing speeds 
to 3.5 characters/minute with a nonsignificant decrease 
in accuracy. In a pair of previous experiments using the 
rapid serial visual presentation BCI communication sys-
tem with a similar naïve Bayes language model, a total of 
seven patients had individual typing sessions that ranged 
from 0 to 3.7 correct characters/minute depending on the 
subject and the likelihood of the target string.[28,29] The 
online bit rates for the ALS patients in this study (46.07 
bits/minute) were also higher than those reported from 
healthy subjects using simpler language-model-based 
classifiers such as naïve Bayes or hidden Markov models, 
which generally range from 20.83 bits/minute to 42.31 
bits/minute.[18,30,31]

Figure 2. Average signal response for attended (solid) and non-attended (dashed) stimuli in the parieto-occipital channels for subject C.
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stimuli in the center of the screen, removing the need 
to shift gaze.[35] Other systems remove the dependence 
on vision entirely by eliciting P300 signals through either 
tactile or auditory stimuli.[36,37] While these systems are 
generally slower, they can potentially be viable for subjects 
with vision deficits that prevent usage of the P300 speller 
(such as that reported for the one subject in this study who 
could not use the speller in online mode). The language 
model and PF algorithm used here are independent of the 
graphical interface, so they can be directly implemented 
in these alternative systems. Future studies should explore 
this integration to determine whether similar gains can 
be obtained using these systems.

While the results of this study show that current meth-
ods can work as a means of communication for ALS 
patients, the current system needs to be modified in order 
to be a truly viable communication method. The hardware 
used consisted of a montage of 32 electrodes, which takes 
significant time to set up and can be prohibitively expen-
sive. The current software is run on a desktop computer, 
which is overly cumbersome to move around so that sub-
jects can communicate in different rooms. Also, the cur-
rent implementation does not provide a means for users to 
initiate or terminate communication, limiting autonomy. 
Future studies should include tailoring the system to the 
target population by minimizing the required hardware 
and giving the subjects more control so that less assistance 
is needed in order to use the system.

This study serves as a demonstration of how the results 
using this system translate to communication perfor-
mance by the targeted user population. However, the 
results are for a single, brief session and do not reflect 
the benefits and concerns that are encountered during 
long-term use. During the session, users expressed some 
challenges with getting used to the system, which could 
have adversely affected results and would not be present 
during actual use. Subject C, for example, said that he 
had difficulty finding the target letter in time because he 
was used to a QWERTY keyboard layout rather than the 
alphabetical one used here. Also, subject E mentioned 
that he modified his strategy between testing and training 
because it helped him concentrate. The language model 
used in this study was also trained on generic English 
text and is likely not the most accurate representation of 
the target strings that ALS patients will use the system 
to type. Tailoring the language model to ALS patients 
in general or individual subjects can further improve 
results. However, there are also additional concerns with 
long-term use such as fatigue and habituation, which may 
reduce the effectiveness of this system. Longitudinal stud-
ies within the ALS population need to be conducted in 
order to accurately gauge the utility of BCI communica-
tion systems.

between attended and non-attended stimuli is therefore 
highly important for the creation of a usable P300 speller 
system. Even after channel selection in this case, perfor-
mance was lower than necessary for a reasonable commu-
nication system. It is possible that altering the interface 
could have improved the SNR for this subject, improving 
the system’s performance. Increasing the size and spac-
ing of the targets, for instance, could make stimuli easier 
to distinguish. Creating a general system that can work 
for the majority of subjects allows for mass production, 
reducing costs and making the system more accessible to 
the ALS community. However, it is important to identify 
ways that the system can be customized in order to reach 
those subjects with additional concerns.

Limitations and future directions

The main limitation of this study is the relatively low 
amount of online data recorded for each subject, with each 
subject using the system online for only 1 to 5 minutes. 
Because of the small amount of data involved, the perfor-
mance estimates for the target population presented here 
are likely less precise than those for the healthy subjects. 
The reason for this limitation is the time spent during each 
session for setup, instructing the user on how to use the 
system, and collecting 30 offline trials, resulting in fatigue. 
Presumably, serial studies within subjects would yield 
more online data for further analysis, which is required 
for future studies. Reducing the number of channels used 
by the system could also decrease the amount of time 
required for setup.[32] In order to focus on online trials, 
future studies can also reduce the amount of training data 
required or remove the training session completely and 
instead learn the subjects’ EEG features online.[17,33]

While several of the subjects needed assistive devices 
to use a computer, none of them were fully ‘locked-in’, so 
speech or commercially available AAC devices such as a 
head mouse or eye tracker were effective. While BCI sys-
tems have some potential advantages over these devices 
(eye trackers, for instance, may need to be recalibrated 
when lighting changes in a room), additional work is 
needed before BCI systems can be considered to supplant 
existing AAC devices, including assessment of relative 
performance, with respect to both character selection rate 
and accuracy in the target environment. Currently, BCI 
solutions are the only option for fully ‘locked-in’ patients. 
There are additional challenges in using the P300 speller 
for these subjects as the lack of gaze control will hinder 
the strength of the stimulus response.[34] Future studies 
should pay particular attention to this subpopulation as 
they are the patients who can be helped the most.

Alternative BCI systems have been developed which 
address the gaze dependence challenge by presenting all 
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